Closed Characteristics of Fourth-order Twist Systems via Braids
نویسنده
چکیده
For a large class of second order Lagrangian dynamics, one may reformulate the problem of finding periodic solutions as a problem in solving second-order recurrence relations satisfying a twist condition. We project periodic solutions of such discretized Lagrangian systems onto the space of closed braids and apply topological techniques. Under this reformulation, one obtains a gradient flow on the space of braided piecewise linear immersions of circles. We derive existence results for closed braided solutions using Morse-Conley theory on the space of singular braid diagrams. Caractéristiques fermées pour des systèmes de Twist par les tresses Pour une grande classe de systèmes Lagrangiens du deuxième ordre, on peut reformuler le problème de chercher solutions periodiques comme l’investigation d’une relation de récurrence qui satisfait une condition ‘Twist’. On projette les solutions periodiques d’un tel système Lagrangien discretisé sur l’espace des tresses fermées. Un flot gradient et obtenu sur l’espace des tresses linéaires par morceaux. Nous dérivons des résultats d’existence pour des solutions periodiques tressées en appliquant la théorie de Morse-Conley. Version française abrégée Considérons un système Lagrangien du deuxième ordre (L, dt), où L ∈ C(R;R) est nondégénéré: ∂ wL(u, v, w) ≥ δ > 0. Le but principal est de trouver des functions bornées u : R → R qui sont stationnaires pour l’intégrale d’action J [u] = ∫ L(u, u, u)dt. Ces caratéristiques bornées sont contenues dans des surfaces d’énergie. Dans cette Note nous décrivons les méthodes pour étudier les orbites fermés dans le contexte présent qui est caractérisé par des surfaces d’énergie noncompactes. Pour un niveau d’energie E qui est régulier, les extrêmes d’une caractéristique sont contenus dans les ensembles fermés {u | L(u, 0, 0) +E ≥ 0}, dont les composantes connexes sont denotées par IE. Pour formuler le principe variationel des caractéristiques 1991 Mathematics Subject Classification. Primary: 37J45, 70H12; Secondary: 57M25.
منابع مشابه
Fourth Order Conservative Twist Systems: Simple Closed Characteristics
On the energy manifolds of fourth order conservative systems closed characteristics can be found inmany cases via analogues of Twist-maps. The ‘Twist property’ implies the existence of a generating function which leads to second order recurrence relations. We study these recurrence relations to find simple closed characteristics andwe give conditionswhen fourth order systems satisfy the ‘Twist ...
متن کاملSecond Order Lagrangian Twist Systems: Simple Closed Characteristics
We consider a special class of Lagrangians that play a fundamental role in the theory of second order Lagrangian systems: Twist systems. This subclass of Lagrangian systems is deened via a convenient monotonicity property that such systems share. This monotonicity property (Twist property) allows a nite dimensional reduction of the variational principle for nding closed characteristics in xed e...
متن کامل2 8 O ct 2 00 5 Closed 3 - braids are nearly fibred
Ozsváth and Szabó conjectured that knot Floer homology detects fibred links. We will verify this conjecture for closed 3-braids, by classifying fibred closed 3-braids. In particular, given a nontrivial closed 3-braid, either it is fibred, or it differs from a fibred link by a half twist. The proof uses Gabai’s method of disk decomposition. AMS Classification 57M27; 57R58.
متن کامل1 2 O ct 2 00 5 Closed 3 - braids are nearly fibred
Ozsváth and Szabó conjectured that knot Floer homology detects fibred links. We will verify this conjecture for closed 3-braids, by classifying fibred closed 3-braids. In particular, given a nontrivial closed 3-braid, either it is fibred, or it differs from a fibred link by a half twist. The proof uses Gabai’s method of disk decomposition. AMS Classification 57M27; 57R58.
متن کاملO ct 2 00 5 Closed 3 - braids are nearly fibred
Ozsváth and Szabó conjectured that knot Floer homology detects fibred links. We will verify this conjecture for closed 3-braids, by classifying fibred closed 3-braids. In particular, given a nontrivial closed 3-braid, either it is fibred, or it differs from a fibred link by a half twist. The proof uses Gabai’s method of disk decomposition. AMS Classification 57M27; 57R58.
متن کامل